Regular closure operators
نویسندگان
چکیده
In an 〈E,M 〉-category X for sinks, we identify necessary conditions for Galois connections from the power collection of the class of (composable pairs) of morphisms in M to factor through the “lattice” of all closure operators on M , and to factor through certain sublattices. This leads to the notion of regular closure operator. As one byproduct of these results we not only arrive (in a novel way) at the Pumplün–Röhrl polarity between collections of morphisms and collections of objects in such a category, but obtain many factorizations of that polarity as well. (One of these factorizations constituted the main result of an earlier paper by the same authors). Another byproduct is the clarification of the Salbany construction (by means of relative dominions) of the largest idempotent closure operator that has a specified class of X -objects as separated objects. The same relation that is used in Salbany’s relative dominion construction induces classical regular closure operators as described above. Many other types of closure operators can be obtained by this technique; particular instances of this are the idempotent and modal closure operators that in a Grothendieck topos correspond to the Grothendieck topologies.
منابع مشابه
M-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING CLOSURE OPERATORS
In this paper, the notion of closure operators of matroids is generalized to fuzzy setting which is called $M$-fuzzifying closure operators, and some properties of $M$-fuzzifying closure operators are discussed. The $M$-fuzzifying matroid induced by an $M$-fuzzifying closure operator can induce an $M$-fuzzifying closure operator. Finally, the characterizations of $M$-fuzzifying acyclic matroi...
متن کاملThe Closure of the Regular Operators in a Ring of Operators
1. Introduction. In [4]2 the elements of a Banach algebra are separated into various classes: the regular elements, the singular elements , the null divisors, the generalized null divisors, and so forth. These classes and their interrelations are then studied in detail. In [5] transformations between Banach spaces are studied and the classes of [4], after suitable generalization, are characteri...
متن کاملCHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS
An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.
متن کاملOn closure operators, reflections and protolocalisations in Goursat categories
By defining a closure operator on effective equivalence relations in a regular category C, it is possible to establish a bijective correspondence between these closure operators and the regular epireflective subcategories of C, on the model of the closure operators on kernels in homological categories [5]. When C is an exact Goursat category [6], this correspondence restricts to a bijection bet...
متن کاملLinear Time Logics Around PSL: Complexity, Expressiveness, and a Little Bit of Succinctness
We consider linear time temporal logic enriched with semiextended regular expressions through various operators that have been proposed in the literature, in particular in Accelera’s Property Specification Language. We obtain results about the expressive power of fragments of this logic when restricted to certain operators only: basically, all operators alone suffice for expressive completeness...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 2 شماره
صفحات -
تاریخ انتشار 1994